1 Show that the equation $\sin ^{2} x=3 \cos x-2$ can be expressed as a quadratic equation in $\cos x$ and hence solve the equation for values of x between 0 and 2π.

2

Fig. 9.1
(i) Jean is designing a model aeroplane. Fig. 9.1 shows her first sketch of the wing's cross-section. Calculate angle A and the area of the cross-section.
(ii) Jean then modifies her design for the wing. Fig. 9.2 shows the new cross-section, with 1 unit for each of x and y representing one centimetre.

Fig. 9.2
Here are some of the coordinates that Jean used to draw the new cross-section.

Upper surface		Lower surface	
x	y	x	y
0	0	0	0
4	1.45	4	-0.85
8	1.56	8	-0.76
12	1.27	12	-0.55
16	1.04	16	-0.30
20	0	20	0

Use the trapezium rule with trapezia of width 4 cm to calculate an estimate of the area of this cross-section.

3 Simplify $\frac{\sqrt{1-\cos ^{2} \theta}}{\tan \theta}$, where θ is an acute angle.

4 Solve the equation $\tan 2 \theta=3$ for $0^{\circ}<\theta<360^{\circ}$.

5 Solve the equation $\sin 2 \theta=0.7$ for values of θ between 0 and 2π, giving your answers in radians correct to 3 significant figures.

6 Solve the equation $\tan \theta=2 \sin \theta$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

7 Showing your method clearly, solve the equation $4 \sin ^{2} \theta=3+\cos ^{2} \theta$, for values of θ between 0° and 360°.

8 Show that the equation $4 \cos ^{2} \theta=4-\sin \theta$ may be written in the form

$$
4 \sin ^{2} \theta-\sin \theta=0
$$

Hence solve the equation $4 \cos ^{2} \theta=4-\sin \theta$ for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.

9 Showing your method, solve the equation $2 \sin ^{2} \theta=\cos \theta+2$ for values of θ between 0° and 360°.

10 (i) Show that the equation $2 \cos ^{2} \theta+7 \sin \theta=5$ may be written in the form

$$
\begin{equation*}
2 \sin ^{2} \theta-7 \sin \theta+3=0 \tag{1}
\end{equation*}
$$

(ii) By factorising this quadratic equation, solve the equation for values of θ between 0° and 180°.

