Show that the equation $\sin^2 x = 3\cos x - 2$ can be expressed as a quadratic equation in $\cos x$ and hence solve 1 the equation for values of x between 0 and 2π . [5]

- (i) Jean is designing a model aeroplane. Fig. 9.1 shows her first sketch of the wing's cross-section. Calculate angle A and the area of the cross-section. [5]
- (ii) Jean then modifies her design for the wing. Fig. 9.2 shows the new cross-section, with 1 unit for each of x and y representing one centimetre.

Fig.	9.2
	/ • •

Here are some of the coordinates that Jean used to draw the new cross-section.

Upper surface		Lower surface	
x	У	x	У
0	0	0	0
4	1.45	4	-0.85
8	1.56	8	-0.76
12	1.27	12	-0.55
16	1.04	16	-0.30
20	0	20	0

Use the trapezium rule with trapezia of width 4 cm to calculate an estimate of the area of this cross-section.

2

3 Simplify
$$\frac{\sqrt{1-\cos^2\theta}}{\tan\theta}$$
, where θ is an acute angle.

4 Solve the equation $\tan 2\theta = 3$ for $0^\circ < \theta < 360^\circ$.

5 Solve the equation $\sin 2\theta = 0.7$ for values of θ between 0 and 2π , giving your answers in radians correct to 3 significant figures. [5]

- 6 Solve the equation $\tan \theta = 2 \sin \theta$ for $0^\circ \le \theta \le 360^\circ$. [4]
- 7 Showing your method clearly, solve the equation $4\sin^2\theta = 3 + \cos^2\theta$, for values of θ between 0° and 360°. [5]
- 8 Show that the equation $4\cos^2\theta = 4 \sin\theta$ may be written in the form

$$4\sin^2\theta - \sin\theta = 0.$$

Hence solve the equation $4\cos^2\theta = 4 - \sin\theta$ for $0^\circ \le \theta \le 180^\circ$. [5]

9 Showing your method, solve the equation $2\sin^2 \theta = \cos \theta + 2$ for values of θ between 0° and 360°. [5]

[3]

10 (i) Show that the equation $2\cos^2\theta + 7\sin\theta = 5$ may be written in the form

$$2\sin^2\theta - 7\sin\theta + 3 = 0.$$
 [1]

(ii) By factorising this quadratic equation, solve the equation for values of θ between 0° and 180°.

[4]